home *** CD-ROM | disk | FTP | other *** search
-
-
-
- SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF)))) SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- STGSJA - compute the generalized singular value decomposition (GSVD) of
- two real upper triangular (or trapezoidal) matrices A and B
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, TOLA,
- TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
- NCYCLE, INFO )
-
- CHARACTER JOBQ, JOBU, JOBV
-
- INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, NCYCLE, P
-
- REAL TOLA, TOLB
-
- REAL ALPHA( * ), BETA( * ), A( LDA, * ), B( LDB, * ), Q(
- LDQ, * ), U( LDU, * ), V( LDV, * ), WORK( * )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- STGSJA computes the generalized singular value decomposition (GSVD) of
- two real upper triangular (or trapezoidal) matrices A and B.
-
- On entry, it is assumed that matrices A and B have the following forms,
- which may be obtained by the preprocessing subroutine SGGSVP from a
- general M-by-N matrix A and P-by-N matrix B:
-
- N-K-L K L
- A = K ( 0 A12 A13 ) if M-K-L >= 0;
- L ( 0 0 A23 )
- M-K-L ( 0 0 0 )
-
- N-K-L K L
- A = K ( 0 A12 A13 ) if M-K-L < 0;
- M-K ( 0 0 A23 )
-
- N-K-L K L
- B = L ( 0 0 B13 )
- P-L ( 0 0 0 )
-
- where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper
- triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23
- is (M-K)-by-L upper trapezoidal.
-
- On exit,
-
- U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
-
- where U, V and Q are orthogonal matrices, Z' denotes the transpose of Z,
- R is a nonsingular upper triangular matrix, and D1 and D2 are
- ``diagonal'' matrices, which are of the following structures:
-
- If M-K-L >= 0,
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF)))) SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF))))
-
-
-
- K L
- D1 = K ( I 0 )
- L ( 0 C )
- M-K-L ( 0 0 )
-
- K L
- D2 = L ( 0 S )
- P-L ( 0 0 )
-
- N-K-L K L
- ( 0 R ) = K ( 0 R11 R12 ) K
- L ( 0 0 R22 ) L
-
- where
-
- C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
- S = diag( BETA(K+1), ... , BETA(K+L) ),
- C**2 + S**2 = I.
-
- R is stored in A(1:K+L,N-K-L+1:N) on exit.
-
- If M-K-L < 0,
-
- K M-K K+L-M
- D1 = K ( I 0 0 )
- M-K ( 0 C 0 )
-
- K M-K K+L-M
- D2 = M-K ( 0 S 0 )
- K+L-M ( 0 0 I )
- P-L ( 0 0 0 )
-
- N-K-L K M-K K+L-M
-
- M-K ( 0 0 R22 R23 )
- K+L-M ( 0 0 0 R33 )
-
- where
- C = diag( ALPHA(K+1), ... , ALPHA(M) ),
- S = diag( BETA(K+1), ... , BETA(M) ),
- C**2 + S**2 = I.
-
- R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
- ( 0 R22 R23 )
- in B(M-K+1:L,N+M-K-L+1:N) on exit.
-
- The computation of the orthogonal transformation matrices U, V or Q is
- optional. These matrices may either be formed explicitly, or they may be
- postmultiplied into input matrices U1, V1, or Q1.
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF)))) SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF))))
-
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- JOBU (input) CHARACTER*1
- = 'U': U must contain an orthogonal matrix U1 on entry, and the
- product U1*U is returned; = 'I': U is initialized to the unit
- matrix, and the orthogonal matrix U is returned; = 'N': U is not
- computed.
-
- JOBV (input) CHARACTER*1
- = 'V': V must contain an orthogonal matrix V1 on entry, and the
- product V1*V is returned; = 'I': V is initialized to the unit
- matrix, and the orthogonal matrix V is returned; = 'N': V is not
- computed.
-
- JOBQ (input) CHARACTER*1
- = 'Q': Q must contain an orthogonal matrix Q1 on entry, and the
- product Q1*Q is returned; = 'I': Q is initialized to the unit
- matrix, and the orthogonal matrix Q is returned; = 'N': Q is not
- computed.
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- P (input) INTEGER
- The number of rows of the matrix B. P >= 0.
-
- N (input) INTEGER
- The number of columns of the matrices A and B. N >= 0.
-
- K (input) INTEGER
- L (input) INTEGER K and L specify the subblocks in the
- input matrices A and B:
- A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) of A and
- B, whose GSVD is going to be computed by STGSJA. See Further
- details.
-
- A (input/output) REAL array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, A(N-K+1:N,1:MIN(K+L,M) )
- contains the triangular matrix R or part of R. See Purpose for
- details.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- B (input/output) REAL array, dimension (LDB,N)
- On entry, the P-by-N matrix B. On exit, if necessary, B(M-
- K+1:L,N+M-K-L+1:N) contains a part of R. See Purpose for
- details.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,P).
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-
-
-
- SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF)))) SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF))))
-
-
-
- TOLA (input) REAL
- TOLB (input) REAL TOLA and TOLB are the convergence criteria
- for the Jacobi- Kogbetliantz iteration procedure. Generally, they
- are the same as used in the preprocessing step, say TOLA =
- max(M,N)*norm(A)*MACHEPS, TOLB = max(P,N)*norm(B)*MACHEPS.
-
- ALPHA (output) REAL array, dimension (N)
- BETA (output) REAL array, dimension (N) On exit, ALPHA and
- BETA contain the generalized singular value pairs of A and B;
- ALPHA(1:K) = 1,
- BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L) = diag(C),
- BETA(K+1:K+L) = diag(S), or if M-K-L < 0, ALPHA(K+1:M)= C,
- ALPHA(M+1:K+L)= 0
- BETA(K+1:M) = S, BETA(M+1:K+L) = 1. Furthermore, if K+L < N,
- ALPHA(K+L+1:N) = 0 and
- BETA(K+L+1:N) = 0.
-
- U (input/output) REAL array, dimension (LDU,M)
- On entry, if JOBU = 'U', U must contain a matrix U1 (usually the
- orthogonal matrix returned by SGGSVP). On exit, if JOBU = 'I', U
- contains the orthogonal matrix U; if JOBU = 'U', U contains the
- product U1*U. If JOBU = 'N', U is not referenced.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= max(1,M) if JOBU =
- 'U'; LDU >= 1 otherwise.
-
- V (input/output) REAL array, dimension (LDV,P)
- On entry, if JOBV = 'V', V must contain a matrix V1 (usually the
- orthogonal matrix returned by SGGSVP). On exit, if JOBV = 'I', V
- contains the orthogonal matrix V; if JOBV = 'V', V contains the
- product V1*V. If JOBV = 'N', V is not referenced.
-
- LDV (input) INTEGER
- The leading dimension of the array V. LDV >= max(1,P) if JOBV =
- 'V'; LDV >= 1 otherwise.
-
- Q (input/output) REAL array, dimension (LDQ,N)
- On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually the
- orthogonal matrix returned by SGGSVP). On exit, if JOBQ = 'I', Q
- contains the orthogonal matrix Q; if JOBQ = 'Q', Q contains the
- product Q1*Q. If JOBQ = 'N', Q is not referenced.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ =
- 'Q'; LDQ >= 1 otherwise.
-
- WORK (workspace) REAL array, dimension (2*N)
-
- NCYCLE (output) INTEGER
- The number of cycles required for convergence.
-
-
-
-
- PPPPaaaaggggeeee 4444
-
-
-
-
-
-
- SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF)))) SSSSTTTTGGGGSSSSJJJJAAAA((((3333FFFF))))
-
-
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
- = 1: the procedure does not converge after MAXIT cycles.
-
- PPPPAAAARRRRAAAAMMMMEEEETTTTEEEERRRRSSSS
- MAXIT INTEGER
- MAXIT specifies the total loops that the iterative procedure may
- take. If after MAXIT cycles, the routine fails to converge, we
- return INFO = 1.
-
- Further Details ===============
-
- STGSJA essentially uses a variant of Kogbetliantz algorithm to
- reduce min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and
- L-by-L matrix B13 to the form:
-
- U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
-
- where U1, V1 and Q1 are orthogonal matrix, and Z' is the
- transpose of Z. C1 and S1 are diagonal matrices satisfying
-
- C1**2 + S1**2 = I,
-
- and R1 is an L-by-L nonsingular upper triangular matrix.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 5555
-
-
-
-